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in dispersive inhomogeneous media. This method is based on the spectral expansion of
complex generalized eigen-oscillations for the electromagnetic fields and the Schwarz
non-overlapping domain decomposition iteration method. The GeSEM takes advantages
of a special real orthogonality property of the complex eigen-oscillations and a new radi-
ation interface condition for the system of equations for the spectral expansion coefficients.
Eigen-oscillations Nume.rical results validate the high resolution and the flexibility of the method for various
Spectral methods materials.
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1. Introduction

High frequency wave scattering in dispersive inhomogeneous media is one of the most challenging tasks facing the com-
putational electromagnetics research communities. Several numerical methods have been used to simulate wave propaga-
tions in such inhomogeneous media, including the integral equation method [1], the finite difference time domain (FDTD)
method [2], the finite element (FE) method [3], and the discontinuous Galerkin time domain (DGTD) method [4]. There
are two related approximation issues in computing high frequency wave scattering in general media: (a) the approximation
of inhomogeneity of the media and (b) the resolution of diffractions and interferences of high frequency waves in such med-
ia. Moreover, parallelization is a must-have for the numerical algorithms in realistic problems.

In this paper, a generalized eigen-oscillation spectral element method (GeSEM) is proposed where a Schwarz non-over-
lapping domain decomposition [5-8] is used to produce a highly parallel iterative algorithm for 2-D electromagnetic scat-
tering problems. On the one hand, to handle the inhomogeneity of the media, piecewise polynomial approximations of
the position dependent dielectric constant are used. On the other hand, to resolve high frequency waves, we employ a
spectral method using complex generalized eigen-oscillations of non-self-adjoint complex Helmholtz operator along one
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of the coordinate directions. The reduced Helmholtz equations in the other direction are then solved with a Schwarz domain
decomposition iterative scheme equipped with appropriate radiation interface conditions. The Schwarz domain decomposi-
tion methods for Helmholtz equations were studied in [5-8] where a radiation interface condition (Robin type) ensured the
convergence of non-overlapping Schwarz iterations. Later, optimized radiation conditions were proposed, which realized
higher order approximations of the radiation operator along the interface via tangential differential operators [9]. In the pro-
posed GeSEM, we will extend the classical Enquist-Majda one way absorbing boundary condition [10] to a system of coupled
equations for the spectral expansion coefficients in the reduced Helmholtz equations.

Traditionally, spectral methods based on eigenfunctions of singular Sturm-Liouville (S-L) operators have enjoyed many
successes in the computational fluid dynamics and electromagnetics [11,12] due to the optimal resolution power of the Fou-
rier expansions using such eigenfunctions. In general, either the Fourier exponentials or Chebyshev/Legendre orthogonal
polynomials are used for the periodic or non-periodic problems, respectively. These basis functions form an orthogonal basis
of a properly weighted L? space as a result of the Hermiticity of the S-L differential operators. However, there is a large class
of problems, most importantly in the electromagnetic wave scattering in dispersive media such as metallic materials in
phase shift mask of lithography for the VLSI process applications and soils in geophysical applications, where the dielectric
constants are complex quantities. The relevant Helmholtz differential operators are no longer Hermitian, therefore, real
eigenvalues and orthogonal eigenfunctions are not available for spectral representations of field solutions in such dispersive
media. Nonetheless, there has been some work using the so-called generalized eigen-oscillations to study wave diffractions
in dispersive media [13]. One of the unique properties of the complex generalized eigen-oscillations is a “real orthogonality”
with a real inner-product between two complex functions. This real orthogonality allows the recovery of the expansion coef-
ficients of a complex-valued function in terms of the generalized eigen-oscillations. Based on this property, we propose the
GeSEM for scattering in dispersive media. It is important to note that the mathematical theory of the completeness, conver-
gence and stability of the generalized eigen-oscillations is an ongoing research topic [14,15]. Thus, the focus of this paper is
the construction of the numerical algorithm and its validation through tests to show the potential of the proposed method as
a viable efficient method for scattering of high frequency waves in inhomogeneous dispersive media.

The computation of the eigenvalues and eigen-oscillations of complex Helmholtz equations is critical for a successful
spectral method. The expansion of a function with these eigen-oscillations requires high degree of accuracy. Several numer-
ical methods have been applied for computing complex Helmholtz eigenvalue problems such as multigrid methods [16] and
high order nodal discontinuous Galerkin (DG) methods [17] for the multidimensional Maxwell eigenvalue problem. In [18],
the authors discuss the issues of spurious eigenvalues of linear elliptic problems. In [19], it is shown that a wide class of sta-
bilized DG methods can provide a spectrally correct approximation of the Laplace operator. In this paper, a stabilized DG
method will be used to compute the eigenvalues and eigen-oscillations of complex Helmholtz operators.

One of the immediate applications of the proposed GeSEM is in the area of grating diffractions. A popular method for
modeling grating structure, approximated by piecewise constant dielectric materials, is the Rigorous Coupled-Waveguide
Analysis (RCWA), first proposed by Nyyssonen in [20] for the rigorous modeling of optical line-width measurement. Yuan
applied this method to model light diffractions for 2D phase shift masks [21]. It is later extended to the modeling of 3D
geometries mask [22]. In the RCWA, both the material properties and electromagnetic fields in each horizontal layer are ex-
panded into Fourier series, algebraic equations for the expansion coefficients result from the Maxwell equations and the
interface conditions between adjacent horizontal layers. Due to the use of Fourier series expansion, the RWCA is only appli-
cable to periodic structures, thus edge effects in a grating will not be modeled correctly [23], and the method is not designed
for parallel implementations. The RWCA may also have difficulties [24] when the number of grating elements become ex-
tremely large and the material is highly dissipative as in VLSI lithography masks due to the well-known Gibbs phenomena
of Fourier expansion of discontinuous data [11]. The GeSEM is proposed to resolve these important issues, which will have
impacts on the simulation of large scale mask in VLSI lithography processes (refer to [23] for a detailed comparison study
regarding these issues between the RCWA and the GeSEM for modeling realistic alternating phase shift masks).

The rest of this paper is organized as follows. Section 2 describes the eigen-oscillation problem for complex Helmholtz
equations with piecewise smooth complex coefficients. We also give a real orthogonality result of the generalized eigen-
oscillations, important for spectral expansions of functions. Section 3 presents the GeSEM for scattering in 2-D inhomoge-
neous dispersive media. In Section 4, a Schwarz non-overlapping domain decomposition version of the GeSEM is proposed
with appropriate radiation interface conditions. Section 5 discusses the high order approximation by DG methods for the
eigen-oscillations and the eigenvalues. Numerical results in Section 6 demonstrate the fast convergence and high resolution
power of the GeSEM for problems including those arising from phase shift mask where high frequency scattering through
metal gratings is involved. Finally, a conclusion and discussion of the GeSEM are given in Section 7.

2. The generalized eigen-oscillations and real orthogonality

We consider the following generalized eigenvalue problem for a non-self-adjoint complex Helmholtz equation with
homogeneous Dirichlet conditions at the end boundaries

=w(tiu forte[-L I, (1)
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where p(t), r(t) and w(t) are piecewise continuous complex functions. For electromagnetic scattering problems to be consid-
ered, we have

p(t) =w(t) =1/p(t), )
€(t) — Permittivity for transverse electric (TE) wave,

where p(t) = . .
u(t) — Permeability for transverse magnetic (TM) wave.

and

rt) = w?u — for transverse electric (TE) wave,
| w?e — for transverse magnetic (TM) wave.

Assume that the interval [—L,L] has been partitioned into the following mesh

L=ty<t;<---<ty=L 3)
In each subinterval I; = (t;_1,t;), p(t) is a smooth function and u; satisfies

(lu,f)/+ru,-:,llui, inl;, fori=1,... N, (4)

p p

and at each interior interface t;, i=1,...,N — 1, we impose the following transmission conditions:

uity) = Ui (), (5)

S = S, )
where p# = p(tf). And, at the end boundaries, homogeneous Dirichlet boundary conditions are given

uy(k) =0, un(ty)=0. (7)

The homogeneous boundary conditions in (7) arise from the use of perfect matched layer (PML) absorbing boundary condi-
tions [25] for the computations of scattering waves (refer to Fig. 1 for the computational domain setup).
Multiplying (4) with a test function v; and integrating by part, we obtain
1o, 1., ¢ ti i1
- /[ —upvids + ;uiv,-|[;71 + ruvids = 4 —u;vids. (8)
i-1

fiq tiq

Summing (8) over all subintervals and applying the transmission conditions (5) and (6) and boundary conditions (7), we ar-
rive at the following weak formulation for the eigenvalue problem: find u € Hy(—L,L) and / € C such that

L 1 L L 1
—/ —u’v’ds+/ ruvds:/l/ —uvds 9)
L P -L L p

for all v e Hy(~L,L).

y=-L

:Perfectly Match:ed Layer (FML):

|
Incident'Field
|

| |
Scattered Field

Fig. 1. Incident wave in a layered medium with PMLs on the top and at the bottom. Dashed vertical lines together with the horizontal lines form the domain
decomposition for a multi-domain GeSEM with a different dielectric constant in each of the rectangular subdomains.
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We present the following lemma on the orthogonality of the eigen-oscillations and its proof is straightforward, thus
omitted.

Lemma 2.1 (Real orthogonality). Suppose u, and u,, are eigen-oscillations corresponding to two different eigenvalues /1, and /.,
then, u, and u,, are orthogonal in the sense of

oL 1
/ —UpUpmds = 0. (10)
-L P

Remark 1. We would like to point out that the eigen-oscillations {u,} do not enjoy the Hermitian orthogonality, i.e.

L
/%umu_nds#o for n=m. (11)
L

Assuming that the eigen-oscillations {uy,},.,; form a complete basis in Hl( L,L) and for all n, ]LL } u,u,ds#0, we would like to
estimate the decay rate of the coefﬁc1ents of a function u which has been expressed in terms of the eigen-oscillations, i.e.

u= iAnun and A, = {LL p Utads (12)
= o 1ununds
It can be easily verified by using the differential equation (1) and an integration by part that
A, =004, (13)
For self-adjoint problems, i.e. p(t), r(t) are real, the following asymptotic formula holds (see [26])
n=0(n?), asn— oco. (14)

If the p is a small complex-perturbation of a real coefficient of a self-adjoint S-L problem, then Theorem 3.5.1 in [26] guar-
antees the eigenvalues of the complex S-L problem have the following asymptotic property:

An| =0(n?), asn— cc. 15
| An] (n%), (15)

3. Generalized eigen-oscillations spectral element method (GeSEM) for 2-D complex Helmholtz equations

Consider the following time harmonic Maxwell’s equations:

V x H = —iweE, (16)

V x E = iouH, (17)

V- (€E) =0, (18)

V-H=0. (19)
By eliminating either E or H from Eqs. (16) and (17), we have a vector Helmholtz equation for H

-V x GVXH) +@*uH =0, (20)
or for E

-V x <%VXE>+(})26E=0. (21)

For a TE-polarized wave, the magnetic field has only a z-component, i.e., H=(0,0,H,), resulting in a scalar Helmholtz equa-
tion for H,

d (10H, 1 0H,
&(E ax>+ (e ay>+w’qufo (22)
with the following interface conditions:
1 oH,
=0 [¢ 5] —o. (23)

where [-] denotes the jump and 2 is the normal derivative at a material interface.
Similarly, for a TM-polarized wave, the electric field has only a z-component, i.e., E = (0,0, E_), which again satisfies a scalar
Helmholtz equation

o (10 2 (10 -
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with the interface conditions

1 0E,

[E,] =0, {ﬁ %} =0. (25)

3.1. Single domain case - a layered media

Consider a layered media with an incident plane wave impinging from above and piecewise constant € (see Fig. 1). The
top and bottom of the computational domain are terminated by two layers of PML regions defined in Section 6.1.
The total field H, can be decomposed into the incident field and the scattering field

H,(x,y) = Hy(x,y) + Hi(x,y), y>0, (26)
Hz(x7y) :H;(xmy)’ y<07
and satisfies the following transmission conditions on material interfaces:

HZ(X’y;) :HZ(X7yi+)7
1 OH(xy) q Hxy)) (27)
) v e w0

where y; is the interface between layer i and i + 1. From the continuity of H, across the horizontal material interfaces, we
obtain the transmission conditions for the scattering waves at y; = 0
Hj(x,07) = H}(x,0"),
1 aH;(x,yl. ) 1 5H§(x.yi+) (28)
€y;) vy T ey)) oy

On the interface y; = 0, we have
{Hz(x ,07) — Hi(x,0") = Hi(x,0"),

1 OHS 1 OH + 1 oH. +
e B (x,07) — - ¥ (x,07) = 1 Y (x,07).

(29)

€07) oy

Moreover, at the outer boundaries of the PML regions in Fig. 1, homogeneous Dirichlet boundary conditions are imposed for
the scattering waves, namely,

HS(x, +L) = 0. (30)

Now, let {¢,,(y)} be the eigen-oscillations of the generalized eigenvalue problem of (1) with p = € and suitable PML absorbing
boundary conditions at the ends. Consider the following series expansion of the scattering wave:

Hy(x.y) = a(X)& () + BX)& (Y )+§:Cp(x)¢>p(y)- (31)
p=1

The first two terms in (31) will be chosen to account for the inhomogeneous interface conditions (29) at y = 0 while the series
expansion will satisfy the homogeneous interface conditions at all y = y;. Meanwhile, both of them will satisfy the Helmholtz
equation (22).
Plugging the expansion in (31) into the Helmholtz equation (22) and using (1), we have
- 1
/" . _
> [ + 600 500 = 0.

p=1

From the real orthogonality condition (10), we can see that c,(x) satisfies

Cp(X) + 2pCp(x) = 0, (32)
whose general solution is given by
Cp(X) = Ap exp(—i\/ApX) + By exp(iy/ApX). (33)
Next, to derive the expression of a(x)&1(y) + f(x)E2(y), we consider the function
Di(x,y) = 2(x)&(y), (34)
where
a(x) = HL(x,07). (35)

If the incident wave is a plane wave given by
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le = Ho eXp(—ikxX - ik}’y)7 (36)
we have

/%) = S5 Hx,0) = ~CH!(x.0), 7
then

OCN(X) — —kiOC(X)~ (38)

Plugging (34) into (22), we have
' L /" 3 2 _
1057 600 ) + gy 00 + g0 () =
Using (38), we obtain

2

a(X)KE(]y)f%(Y)> L otpa ) - e m)| =o.

€(y)

Hence, we can see that &;(y) can be selected as the solution of the following problem to account for the inhomogeneous jump
conditions for the function at y = 0:

(Haw) + oS m =0,
Gi(+L) =0,

(39)
&(07)-&(0") =1,
56(07) - =407 =
Similarly, we set the function
Da(x,y) = B(x)&2(¥), (40)
where
) = 5 Hilx 0°) (41)

And &,(y) can be defined to account for the inhomogeneous jump conditions for the derivative of the function value at y =0

H5W) + 0= &)

&(£L) =0, (42)
&(07) - &(07) =0,
6((;’) 6/2(07) - 5((])+) é,Z(OJr) = 5(3]‘)
Finally, we can easily verify that
Hy(x,y) = a(x)& (y) + BR) & () + Zcp(x)%(}’% (43)
p=1

solves Eq. (22) with interface conditions (23) for an incident plane wave given by (36).
Similar formulation can be done for the E, component for TM-polarized waves.

3.2. Multi-domain case - general inhomogeneous media

We consider the scattering of an incident plane wave in an inhomogeneous media where the dielectric constant is
approximated by piecewise constants or linear polynomials over each rectangular subdomain €;; (formed by horizontal so-
lid lines and vertical dashed lines in Fig. 1), i.e.

€i(x,y) = €+ €, (X,Y) € Qij, (44)

ij>

where €} and e{j are constants (TE wave) or linear functions (TM wave) of x and y, respectively. By selecting the size of Q;;, we
can approximate general inhomogeneous media within any given accuracy.

3.2.1. TE wave
For the TE case, in each vertical strip region, €;=U; €;; = {(x,y)|.xi_1 <X < X3}, €;4(x,y) is assumed to be constant in each
subdomain €;; and we can set €} = 0, and eﬁ} = €;5(x,y). Now H;(x,y) can be written as
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H(x%,y) = ¢ ()& ) + B ()& W) + Z (%), (), (45)
p=1
where ¢>§,(y) is the eigen-oscillation satisfying
1 i ! / i i
(d*w;,(y))) +a’udyy) = 4 Ey bp (), (46)

and & (y) and & (y) are determined by Egs. (39) and (42).
Plugging the expansion (45) into (22), we can get

NgE

& (X) (617*(45;(3/))) + l(Cﬁ,(X))”cb};(y)] + @Y 6(X)¢(y) =0,

v
€.

I
—_

p

which yields
e

< |dx 2%

Mg

LX) + nch(x >} S ) =0 7)
ij

=
I

Using the real orthogonality of the eigen-oscillations (10), we get
2

a2 q+/LqC =0. (48)
Rewriting the above equations into a vector form, we have

d ;

2aC T AC =0, (49)
where C' = (ci,...,c)", and A' is defined by

Ay = 2g0pq, (50)

and is a complex diagonal matrix. Here &, is the Kronecker delta function. Eq. (49) will be solved analytically or by a Cheby-
shev collocation method especially in the TM wave case below when A' is not a diagonal matrix anymore and becomes a
function of x.

3.2.2. TM wave
For the TM case, the Helmholtz equation (22) for the E, component can be rewritten as
0 (1 0E, 0 (1 0E, I -
&<ﬁ§>+6y<u ay>+w(e +€)E 0, (xy) € (51)

where €} and ey in principle can be any function of x and y (taken to be linear though in this paper), respectively.
In each vertlcal strip region, ;= U;2;; = {(x,y)|Xi-1 < X < x;}, E;(x,y) can be written as

E(xy) = (&) + B S0 + Y cp(x)d,)- (52)
p=1
Here qﬁ;(y) is the eigen-oscillation satisfying
1 A i1
(G #h0)) + P00 =iy 60 (53)

And éﬁ (y) and 5; (y) satisfy Eqs. (39) and (42) with all € and p exchanged for each strip ©;.
Again, using the real orthogonality of the eigen-oscillations (10), we get

a2
o q( )+/1qc +2 qucp =0. (54)
where
i i 2 t 65 i i
qu = qu(X) =w /—L ﬁqﬁp(y)(bq(y)dyv (55)

which results in the same form of equations for the coefficient C' as in (49), and here A’ defined by /1 = Jq0pq + b, Will be a
complex symmetric matrix which can not be diagonalized in general and A’ = A{(x) is a function of x w1thin each subdomain
Q;.
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4. Parallel Schwarz GeSEM

In this section, we will apply a non-overlapping Schwarz domain decomposition method to implement the multi-domain
GeSEM proposed in the previous section with appropriate radiation interface conditions for the coupled 1-D systems for the

expansion coefficients C in (49).

4.1. Radiation conditions

Since in general the matrix A can not be diagonalized, the traditional Enqusit-Majda’s one-way wave condition [10] for
the scalar case does not apply. Here, we will propose a more general radiation condition for the case of non-diagonalizable

matrix A.

4.1.1. A simple case - 2 x 2 Jordan block

Suppose after a similarity transformation by a complex matrix U, 4 becomes a 2 x 2 Jordan block, i.e.

_ L1 Ko
vAaut =% | = .
h J {0 H]

Defining D = UC = {31 } and assuming constant U near the boundary points, the new variable D satisfies
2

" 2
ol -5 ola]-
The second variable d, satisfies
d; + k*d, =0,
whose general solution can be written as
d,(x) = cq exp(ikx) + c; exp(—ikx).

In an interval [a,b], the radiation condition for d>(x) at x=b is

d .
(a + 1k> d2|X:b = 0,

which is the same as the traditional one-way radiation condition.
To find the radiation condition for d;(x) which satisfies

d + kKdy = —d,,
where d, acts as a resonant forcing term, we write the general solution for d; as
di (%) = (e1x + f1) exp(ikx) + (€2X + f») exp(—ikx).
Term (e,x + f>)exp(—ikx) then satisfies
[exp(ikx)d; (x)]" = (exx +f>)" =0,
o)
[d} +2(ik)d; + (ik)*d1]],_, =0
Using (61), we can get
2ikd, - 2k*d; — d, =0,
which is the radiation condition for d; at x = b.

4.1.2. General case — n x n Jordan block
In fact, we can rewrite the radiation condition for the above simple case as

d [d; [ da
a{dz} +1K{d2] =0

where
K=K %]
0 k

It is easy to check that

(56)

(61)

(62)

(63)

(64)

(65)

(66)

(67)
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K? = 4,
thus, K is simply the square root of A
K=+vA. (68)
Therefore, in the case of a n x n Jordan block UA U~' = k?[ + I, where
01 0 ---0
00 1 ---0
F=i{: "~ " = (69)
00 - 0 1
00 -- 0O

nxn

from mathematical induction, we can show that

1

\/I<I+F—k<l+ r>_ k“f ] (70)

2
= ok :

where

fx)=v1+x (71)

Therefore, the radiation boundary condition is

d d
4 +iK| | =0 (72)
dx N
d, dy
which reads in term of the original variable
d .
5 CHike=0. (73)

4.2. Schwarz GeSEM

Using the complex generalized eigen-oscillations along y direction, the Helmholtz equations (22) or (24) are reduced to a
system of 1-D Helmholtz equations (49) in x-direction. A Schwarz domain decomposition iterative scheme will be used to
solve (49) with the radiation interface conditions. Fig. 2 is the sketch for the Schwarz iteration, in order to compute the solu-
tion in subdomain Jj = [x;_1,x;] for the iteration step n, the information on the neighboring domain I;_; and I;;; at the previous
step n — 1 is used to provide the boundary condition at x;_1, x; by a Robin boundary condition using the radiation operator in
(73).

4.2.1. TM wave

The solutions for the scattering wave E;; in different strips are connected by interface condition (25) via the radiation
operator (73) with the eigen-oscillation expansion for the E; ; in (52) for adjacent strips and the real orthogonality property
(10) of the eigen-oscillations, namely

=g = [HE g +2cf“qw1¢fdy JH (008 + P &) ¢l dy,
=ﬁ£fﬂ<d3§jx”1 +U T x W“)#C'y S (28 +42d)didy,

which can be combined into the radiation operator (73) to give the following radiation interface condition for the GeSEM at
the right end boundary of the subdomain I;

dc ; .
o + K@) = F+iK(x)G, (75)

where C] :{C117CJZ7C137"'}‘F:F(Cj+]7uj+]7ﬂj+l7 ;rl +] {fj} and G = G(G+1aﬂ§1152)_{g}}

(74)

i i i+

n-1 n n-1

Fig. 2. Schwarz iteration in x-direction.
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A similar radiation interface condition at the left end boundary of subdomain I;;; can be obtained

dc!
dx
where F =F(C,,f,&,&) = {f;},G=G(C,uB,&,%) = {g;}, and

&= f O‘]d + ﬁ]fl + ZCL(}‘)’ q_‘)”ldy f J+1 ]+1 ﬁ}+1£]+1)¢]+1dy7

—iK(x)O = F - iK(x)G, (76)

. " . (77)
fm (B e o (S
Finally, for the end boundaries, we simply have an homogeneous radiation condition
j ,
d_C +iKC =0, (78)

dx

where K is evaluated inside the computational domain and +/— sign is for the right/left boundary of the computational do-
main, respectively.

4.2.2. TE wave
Similar procedure can be done for the TE wave, the solution for the scattering Wave HS in different strips is connected by
interface condition (23) via the radiation operator (73). Using the expansion for the H;; ln (31) for adjacent strips and again

the real orthogonality property (10) of the eigen-oscillations, we have
=g= f O(]+1€J+1 + ﬂ]+1 + ZCJ+1 ¢]+1 ¢1 dy f L g” O{ji:l] +ﬁ1§’2)¢1 dy7

(79)
dcJ i 4, B .
~f= m (o v «/f;l)%dyff@(%éw%mdx

which can be combined into the radiation operator (73) for the following radiation interface condition for the GeSEM at the
right end boundary of the subdomain J;

dc ; o
g K@) = F+iK(x)G, (80)

where C = {c,,c),c},...},F = F(C ot1, g1 &7 &y = {f} and
G= G(C]-H aj+] [;Hl +1 +1) {g]}
A similar radiation interface condition at the left end boundary of subdomain I;;; can be obtained
dcj+1
dx
where F = F(C, o, f, &, &) = {f},G=G(C, o, f,&.5) = {g;},

g =178+ P +2cp</# Oy = [ g gl dy,

— iK% = F —iK(x{)G, (81)

y . (82)

G (e B2 ol - I f (5 0 .

Finally, for the end boundaries, we simply have an homogeneous radiation condition
CA—C +iKC = (83)

It is clear that the solution at the current time step in J; only depends on the solution at previous step in neighboring sub-
domains, as a result, this algorithm is highly parallel.

Remark 2. The convergence of the proposed Schwarz GeSEM depends strongly on the magnitude of the imaginary parts of
the eigenvalues in K as shown in Appendix for the case of two subdomains.

5. Numerical issues of eigen-oscillations and eigenvalues
5.1. Computations of eigen-oscillations by DG Methods

In this section, we apply the DG method for the generalized eigenvalue problem. For illustration purpose, we set r(t) = 1 in
(1). Following [27], we introduce
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q=u'(t),

and obtain a first-order system
d ( 1 ) 1
| ==q(t) ) +u=2A—u, 84
ax o 1" p(0 (54
u'(t) - q(t) = 0. (85)

Discretize [—L,L] into N elements uniformly and let I; = [t;_4,t]. For simplicity, the interfaces of the material layers coincide
with the interfaces of mesh grids and we define the finite element space as

Vi={vel*(-LL):v|, e P(l), j=1,....N},

where P¥ denotes the space of polynomials on Ij of degree at most k. The discrete eigenvalue problem is then to find (4,up,qn)
such that

dv 1 K
/ —qy h” ds + hgji12Vnu(61) — hejVhu(E) + /1 UpVpyds = /1/’ ;uhvh,udx YVhy € P L) (86)
i i
dv
/: Up dhq ds + huji1/2Vhg(6112) = Rujo1/2Vhg(G 1) = /I QpVhods Wvag € P(Iy), (87)
) J
where (hg j,h,;) is the numerical flux defined by
huj = {uj}, (88)
1
hej ={—q;} — Su([w)), (89)
Pi
when ¢; is an interior node and
huo =0, (90)
1
hgj = —q; — Sn(w)), (91)
Pi

when ; is a boundary node. Here, we used the notations

[ij] = WjJr - Wj77 {Wj} = (VV]Jr +Wj7)/27

across a mesh point t;.

Remark 3. The stabilization function Sy(-) is defined as Sy(¢) = «h~! with a > 0 independent of the mesh size. Note that this
choice of numerical flux leads to a stable DG method. For other choices of numerical flux and the general discussion of
stability issues, we refer to [28].

For t € I;, let

=S ), (92)
k=1

=S ddio), (93)
k=1

where s is the total number of the basis functions and ¢, are basis functions.
On each interval I;, same order of Legendre polynomials will be used as the basis functions for P"(Ij) given by

(ﬁ;( —Lk )) ’(Z],Z,...,S, t61j7
) 2(t—t; )
j _ i)

where h; is the length of the jth interval and Ly is the Legendre polynomial of degree k — 1.
Using the definition of the numerical flux and replacing u, and q,, defined above, we obtain from (86) and (87)
Tq] 4y

o Lo alg L _aTq
-S,q +5P | —— O | SO =D +— =B

A (p(tm) i (Y) 2 '<P<ff') ST
— (P — D]W) + B[ — DU + MW =MW,

- S +%d>,(<1>}uf + Q) — %dil(cbfu"" + )W) = M{,
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where S and S” are the local stiffness matrices given by

S = / o S s

d,
p nm / ¢1T1 ds

M and M’ﬂ are the local mass matrices given by

M, = / Gmibads,
pnm / — Pmnds,

and @, = (¢1(1), ...,d(1)), B=($1(—1),...,0(~1)), W —@,...u)"and ¢ = (¢,,...q))". To carry out the numerical imple-
mentation, we need to compute matrices M’ s, M S’ which are denoted simply as M and S when the same Lengendre basis
is used for each subdomain.

Collecting similar terms, we obtain

D +Eq*' — Fg' + (cprqu + oo - %d)er,Tuf“ —%qb,cpIuH +Mu = MW, (94)
q = AW + BU*! —Cu’ ' (95)
where
-1 -1
A=-M"S +MT(<1>,<1>I - @), B= MTqb,qs,T,
M 11
C= Tcp,@f, D=-8,+ 3 m(@@j - 99)),
11 11
E== o,d], F= — P!
2p@,,) " 2p@) T
Now we have
GPW 2+ G + G+ G + G = MW, (96)
where
G7 =FC, @7 =-DC-FA- L oy
G = DA~ EC— FB+ £ (0,0] + &,]) + M,
G’ =DB+EA-Z0,0], G =EB.

Finally, we obtain the following matrix representation for the eigen-oscillation problem (1) in the discretization of DG
approximation

Gu = /M,u, (97)
where u=(u',... u™),
G ¢2? G¢® 0 0 0 0 0 0
GZ.] GZ.Z GZ.3 GZ.4 O O 0 0 0
c G3,1 G3.2 G3,3 G3.4 G3.5 0 0 0 0
= 0 G*2 %3 G S s 0 0 0 )
0o 0 0 0 0 0 .. GVW=2 GNN-T (NN

and (96) will be solved by eigs in matlab which calls ARPACK (see [29]).
5.2. Examples of eigenvalues and eigen-oscillations

Let the interval [0, 7] be discretized uniformly into N subintervals and two different profiles of €(x) will be considered as
follow
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log2(N): N —— Number of Grids log2(N): N —— Number of Grids

Fig. 3. The convergence of the computed eigenvalues for different mesh points with a discontinuous Galerkin method for € = €4(x). On each subinterval, a
2nd order Legendre polynomial is used. Left: The relative error of the eigenvalue close to 1.479 + 0.1898i. Right: The relative error of the eigenvalue close to
—21.78 — 0.8667i.

1+0.5i, xe[0,m/8)Uc (7n/8,7],

]2 x e [rn/8,m/4) U [3n/4,71/8],
@ =95 x € [1/4,31/8] U [5m/8,37/4],
4, X € [31/8,5m/8],
and
(1410, x€(0,1/2),
€al¥) := { 2, xe(n/2,m). (%8)

Hence we have seven layers of dielectric materials in the first case and two layers in the second case. The convergence for
certain eigenvalues are shown in Figs. 3 and 4 shows the decrease of the relative error as the number of the grids N increases.

Next, we fix the number of subintervals (N = 64) and use different orders of Legendre polynomials as basis functions. The
relative error of the eigen-oscillation is calculated as follows. First, we calculated the eigen-oscillation 1 corresponding to
eigenvalue 4, using Legendre polynomials of order s. Then we use Legendre polynomials of order s+ 1 to obtain u$*!. The
relative error of the eigen-oscillation is given by

-4 T T T T T T T -1 T T T T T T T
a —*— Real Part b —%— Real Part
—6— Imaginary Part —O6— Imaginary Part
-5 72 - B
= =
N D
T -7 T -4t
{=4 c
=< <
g S
g® g
_9 _6 -
-10 L L L L L . . -7 . . . . . . .
4 45 5 5.5 6 6.5 7 75 8 4 45 5 5.5 6 6.5 7 75 8
log2(N): N —— Number of Grids log2(N): N == Number of Grids

Fig. 4. The convergence of the computed eigenvalues for different mesh points with a discontinuous Galerkin method for € = €5(x). On each subinterval, a
2nd order Legendre polynomial is used. Left: The relative error of the eigenvalue close to 0.5996 + 0.6685i. Right: The relative error of the eigenvalue close
to —23.40 + 0.7949i.
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Fig. 5. The relative L, error in the eigen-oscillations against the order of polynomials, € = €. Left: the eigen-oscillation for eigenvalue 0.5996 + 0.6685i.
Right: the eigen-oscillation for eigenvalue —2.591 + 0.2961i.

e

es+1
l[ug ) 2

where the L% norm is evaluated using Gaussian quadrature. We compute the relative error for s = 1 through s = 4. Fig. 5 shows
the relative L? errors against the order of the Legendre polynomials in the calculated eigen-oscillations for two eigenvalues.

6. Numerical results for 2-D complex Helmholtz equations
6.1. PML boundary conditions for scattering waves
The homogeneous Dirichlet boundary conditions in the scattering wave (7) is achieved by terminating the computational

domain at the top and bottom with a PML layer [25] as indicated in Fig. 1. In this paper, we apply the formulation of Chew
and Weedon [30]. Define a complex-transform coordinate

~ i y
y =y+\/ﬁ/ o(s)ds,

where a is the starting position of the absorbing layer and ¢ is some given function. In the absorbing layer, the above coor-
dinate stretching leads to the following equation

i d i dUpm 2 _
(1 +—m00’)> @ ((1 + m“@)) dy ) + @ ue(y)Upm = 0,

or

-1
d i du i
g ((1 N \/aTua(y)> d;ML> + Pue(y) (1 +m0(y)> Upn = 0.

At y = +L, we apply the homogeneous Dirichlet boundary conditions
Upmi(£L) = 0. (99)

6.2. Layered media
Now we consider the numerical calculation of H; by truncating the series at Nth term in (43), i.e.
N
H(x%,Y) & 2(x)& ) + BREY) + Y X)$,0). (100)
p=1

The calculation of A, and B, p=1,...,N in (33) can be done by using the orthogonality of ¢,(y) together with suitable
boundary conditions. We assume the following Robin type boundary conditions
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S

B ik =g, atx=0, (101)
S

aa—liz-s—ikaS:gz(y), atx=M. (102)

Plugging (99) into above equations, multiplying with ¢,(y)/€(y) and integrating to obtain, for each p
[c,(0) + ikyCp(0)]dp + (o' (0) + iky21(0))ep + (B'(0) + iky f(0))fy = &1 -
[cp (M) + ikycp (M)]dp + (o (M) + ikyou(M))ep + (' (M) + iky B(M))fp = 3.,
where
Ay = (dp,bp)es € =(,1,0p)es fp=1(62s0p)e, &1p=(81,Pp)er  &2p = (&2, Pp)es
and (f,g). = [*, Z&:f(v)g(y)dy. Note that
(¢p: dg)e =0, p#q.

Hence we have two equations for A, and B, for each p=1, ... ,N and they can be solved easily.
For a numerical test, we consider a computation domain Q = [0, 7] x [-7, 7] and

17 ye [—TC, 0)7

€y):=4 241, yel0,m/2),

3, yen/2,m.
The incident wave is Hi = exp(—dkyx — dk,y) such that kﬁ + ka, = k2. For simplicity, ky = 1 is used in the following computa-
tion. To obtain ¢y, & and eigen-oscillations on [—m, 7t], we use 64 grid and Legendre polynomials of order 5 in each subinter-
val. Fig. 6 shows the computed &;(y) and &,(y) for k = v/2. Note the effects of PML layers on the solutions near two ends of the

computational domain.
Let

_ [01x(nt+y), yel-m0),
”y)'*{o.lx(n—y)., yelon,

and g,(y) = —g1(y). We use 40 eigen-oscillations in (43). For k = v/1.01, k = v/2 and k = +/101, the numerical approximation
by the series expansion is shown to have converged. Fig. 7 shows two eigen-oscillations ¢, and ¢;5 for k = /2. In Fig. 8, we

plot /|A,|* + |B,|* for different wavenumbers. Fig. 9 shows the computed H with k = v/1.01, k = v/2 and k = v/101.

6.3. Block media with piecewise constant dielectric constants

Next, we consider the scattering of incident plane waves off a block media with piecewise constant complex dielectric
materials, as shown in Fig. 10. The scattering in such a material is of great interest in the design of phase shift mask in
the VLSI lithograph technology, where the presence of metal parts in the mask with complex dielectric constants are used
to create phase shift of the impinging light rays (within X-ray range for nano-electronics) to induce finer resolution on the
chip wafer through wave interference [22]. Non-dimensionalized variables are introduced in these simulations

06l —- Real Part ] —- Real Part
. -o- Imaginary Part -o- Imaginary Part

03 |

0.2 |

01

Fig. 6. The real and imaginary part of & (left) and &, (right) for k = v/2.
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08 | -o- Imaginary Part . -o- Imaginary Part

- k=101

0 5 10 15 20 25 30 35 40
number of terms

Fig. 8. Decay of the calculated expansion coefficients 1/|A,|> + |By|* in (33) of GeSEM solutions for different wave numbers.

Fig. 9. Computed scattered field H; (real part). Left: k = v/1.01. Middle: k = v/2. Right: k = v/101.

Xox Yoy Yt ZH-H E—E (103)
L L L
where L =1 rum is the reference length, c is the speed of light in free space, Z, = , /£ is the free-space impedance. In Fig. 10,

one layer of metal grating locates under one layer of dielectric is used in our simulations. The computational domain is
[0,24] x [0,0.96] and the wave number of the incident wave is k. =k, =10. The computational domain in the x-direction
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Fig. 10. Distribution of € (piecewise constant case).

is partitioned into 40 subdomains (about one wave length / in one subdomain) and the y-direction into 12 subdomains with
the first and the last subdomain being PML layers. For the Schwarz iteration, the maximum error of the boundary conditions
along all vertical interfaces are used as the residual of the Schwarz GeSEM and the error tolerance for convergence is set to be
1075,

6.3.1. TE wave

Fifteen (15) eigen-oscillations are used along the vertical y direction and eight (8) collocation points are used in the
Chebyshev collocation in each subdomain in x-direction. The converged solution obtained by the parallel Schwarz iteration
is shown in Fig. 11 where Fig. 11a shows the real part of the total wave and Fig. 11b shows the scattering wave (discontinuity
of the field at the top material interface y = 0.48 can be observed). The 1-D plot of the H, field at a fixed y = 0.3967 is shown in
Fig. 12a. Again, to verify the accuracy of the converged numerical solution, we repeat the GeSEM with a finer mesh (20 eigen-
oscillations in y-direction and 10 collocation points for each x-subdomains) and in Fig. 12b, the relative error between these
two converged numerical solutions confirms the numerical convergence of the GeSEM method. Fig. 12c shows the conver-
gence of the Schwarz iteration.

6.4. Block media with piecewise linear dielectric constants -TM wave

The advantage of GeSEM in the E, (TM wave) formulation is that we can handle the case where the dielectric constant is a
piecewise linear function of the position. This allows a better approximation to general inhomogeneous media. To test the

S T |
. "“'m'"'"""‘”I|mm'mmm"”“"""m“mlmmumu |
i (e . T
. l\lllllllmmlﬂIII!\lll||IlIHI||“N"\||NIIIINNllllmlllllmli " |llIllllllﬂlmlllIlllllil"N‘ImllllI|ll'|llll!lillI|ll|||mIiIIIVI )

Fig. 11. TE wave: (a) real part of the total wave and (b) real part of the scattering wave.
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Fig. 12. TE wave: (a) 1-D plot at fixed y, (b) error betwen different basis functions and collocation points, and (c) convergence history of Schwarz iterations.

b Convergence of Schwartz Iteration
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log10(error)
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# of iteration

Fig. 13. (a) Distribution of € (linear case). (b) Convergence history of Schwarz iterations (piecewise linear dielectric constant).

GeSEM for this case, we consider a piecewise linear profile of € in Fig. 13a over a domain [0,5] x [0,5]. Again, the wave num-
ber of the incidence wave is ky = k, = 10 and 12 subdomains (about 1.5 wavelength size each) are used in both x and y direc-
tions (the first and the last subdomain in y-direction also are PML layers). Fig. 13b shows the convergence of the Schwarz

Real(total field)

QSsssa

LN

05 1 16 2

Fig. 14. (a) Real part of the total wave (linear case) and (b) real part of the scattering wave (linear case).
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Fig. 15. (a) 1-D plot at fixed y (linear case). (b) Error between different basis functions and collocation points with fixed y (linear case).
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Fig. 16. (a) 1-D plot at fixed x (linear case). (b) Error between different basis functions and collocation points with fixed x (linear case).

iteration. The converged Schwarz GeSEM is given in Fig. 14a - real part of total wave E, and Fig. 14b - real part of the scatter-
ing wave E;. To validate the GeSEM solutions, we compute the solution with three meshes

e Mesh A - 50 eigen-oscillations in y direction and 10 collocation points per subdomain in x direction;
e Mesh B - 55 eigen-oscillations in y direction and 12 collocation points per subdomain in x direction;
e Mesh C - 60 eigen-oscillations in y direction and 14 collocation points per subdomain in x direction.

Fig. 15a is the 1-D plot for E, field fixing y = 2.9297, 2.0638, 0.4297, while Fig. 16a shows the E, field at a fixed x = 2.5. The
difference of solutions between Mesh A and Mesh B is identified as error2 and between Mesh B and Mesh C is identified as
errorl in Figs. 15b and Fig. 16b, respectively.

7. Conclusions

In this paper, we proposed a parallel generalized eigen-oscillations spectral element method (GeSEM) for complex Helm-
holtz equations for the scattering of high frequency electromagnetic waves in dispersive inhomogeneous media. The inho-
mogeneity of the media is approximated by either piecewise constant (TE waves) or piecewise linear (TM waves) dielectric
constants. Based on the expansions of complex eigen-oscillations and a non-overlapping Schwarz domain decomposition
with a new radiation condition at the domain interfaces, the GeSEM is highly parallel and provides high resolution in the
oscillatory fields of high frequency wave interference in inhomogeneous dispersive media. However, many issues remain
to be investigated such as the mathematical theory for the extent of validity and convergence of expansions of eigen-oscil-
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lations from non-self-adjoint Helmholtz operators and the understanding of the Schwarz iteration with the proposed radi-
ation interface conditions. So far, our numerical results confirmed the convergence of the Schwarz GeSEM when the imag-
inary part of the dielectric constant is small as indicated by the simple analysis in Appendix. It will be a challenge to resolve
the convergence issue for general complex dielectric constants, which will be the topic for further research.
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Appendix. Convergence of 1-D Schwarz iteration

Here, we present the convergence analysis of Schwarz iteration for Helmholtz equation with piecewise constant coeffi-
cients for two subdomains. Denote the interval by [—a,+a] (a > 0) and the interface at X € (—a, +a). The equation under con-
sideration is

1w 4 o2 _
<p(x)u(x)> + o0 (x)u(x) =0, (104)

where p(x) and ¢(x) are both piecewise constants, say

(105)

_ [P, X€(=0,X0) _{0'17 X € (—a,xo)
p(x)f{pz, xe(xo,+a)’gx 0y, X € (Xo0,+0a)

and the following transmission conditions are imposed:

u(xy) = ulxp),
106

L) = u(5). (106)
P2

P1
The Enguist-Majda [10] one way radiation boundary conditions at +a are

(Ox + k1 )u(—a) =0, (0x —iky)u(+a) =0, (107)
where ki = \/p;0;.

As a result, solution u(x) can be written as

() {Lexp(fiqu) x € (—a,Xo), (108)

| Rexp(+ikox) x € (x0,+0a),

where L and R are two undetermined coefficients, which will be computed by the Schwarz iteration. The iteration uses Robin
radiation conditions at the interface

(0 — ik U™ (xo—) = (% O — iky u"(x0+)), (109)
(O + ko) U™ (Xo+) = (%j O + kot (xof)). (110)
Using (107), we obtain
1 = 1P ) explithy + ko)xolR”, 111)
2 p,
R — % % (1 - %) exp[—i(ki + k2)xo]L", (112)

where z = /’f—ﬁf
It follows that

1
A =%(1 —z)(l 7>L"*1, (113)
R™! :}1(1 -2) <1 —%>R"*P (114)

Therefore, the convergence rate for the Schwarz iteration using the one-way radiation interface condition (108) and (109) is
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Fig. 17. Region (white) where iteration error reduction factor § < 1.

5:%(1—,2)(1—%).

Let p,ki =k, p,ky =k + Ak, u = 4, then, z=1+u, and the convergence rate § can be rewritten as
u2

Fig. 17 shows the domain in the complex u-plane where |d| < 1 which indicates the size of the variation Ak = p;k, — p1k; for
which the Schwarz iteration converges. It shows that the Schwarz iteration will not converge for dielectric constants with
large imaginary parts or with large contrasts or near resonance (p1k; or p,k, close to zero).
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